Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.599
Filtrar
1.
Cell Biochem Funct ; 42(3): e3998, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561964

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinase , Humanos , Feminino , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
2.
Signal Transduct Target Ther ; 9(1): 99, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627366

RESUMO

This registration study assessed clinical outcomes of TQ-B3525, the dual phosphatidylinositol-3-kinase (PI3K) α/δ inhibitor, in relapsed and/or refractory follicular lymphoma (R/R FL). This phase II study (ClinicalTrials.gov NCT04324879. Registered March 27, 2020) comprised run-in stage and stage 2. R/R FL patients after ≥2 lines therapies received oral 20 mg TQ-B3525 once daily in a 28-day cycle until intolerable toxicity or disease progression. Primary endpoint was independent review committee (IRC)-assessed objective response rate (ORR). Based on results (ORR, 88.0%; duration of response [DOR], 11.8 months; progression-free survival [PFS], 12.0 months) in 25 patients at run-in stage, second stage study was initiated and included 82 patients for efficacy/safety analysis. Patients received prior-line (median, 3) therapies, with 56.1% refractory to previous last therapies; 73.2% experienced POD24 at baseline. At stage 2, ORR was 86.6% (71/82; 95% CI, 77.3-93.1%), with 28 (34.2%) complete responses. Disease control rate was 95.1% due to 7 (8.5%) stable diseases. Median time to response was 1.8 months. Among 71 responders, median DOR was not reached; 18-month DOR rate was 51.6%. with median follow-up of 13.3 months, median PFS was 18.5 (95% CI, 10.2-not estimable) months. Median overall survival (OS) was not reached by cutoff date; 24-month OS rate was estimated as 86.1%. Response rates and survival data were consistent across all subgroups. Grade 3 or higher treatment-related adverse events were observed in 63 (76.8%) cases, with neutropenia (22.0%), hyperglycemia (19.5%), and diarrhea (13.4%) being common. TQ-B3525 showed favorable efficacy and safety for R/R FL patients after ≥2 lines prior therapies.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/genética , Intervalo Livre de Progressão , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
3.
J Med Chem ; 67(8): 6638-6657, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38577724

RESUMO

PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy.


Assuntos
Antineoplásicos , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases , Leucemia Mieloide Aguda , Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Animais , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , Descoberta de Drogas , Camundongos Nus , Simulação de Acoplamento Molecular , Masculino
4.
Respir Res ; 25(1): 175, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654248

RESUMO

BACKGROUND: Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS: Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS: Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION: These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.


Assuntos
Asma , Modelos Animais de Doenças , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Ratos , Masculino , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Antiasmáticos/farmacologia , Ovalbumina/toxicidade
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 643-646, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660880

RESUMO

Chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) is a relatively inert B lymphocyte proliferative disease. In recent years with the launch of new drugs, chemotherapy has been gradually replaced by targeted therapy, which significantly prolongs the survival of patients and reduces the side effects of treatment. At present, BTK inhibitors, PI3K inhibitors, spleen tyrosine kinase (SYK) inhibitors and BCL-2 inhibitors are the most studied targeted therapeutic drugs for CLL/SLL. This article reviews the research progress of different types of targeted therapeutic drugs in the treatment of CLL/SLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Terapia de Alvo Molecular , Quinase Syk/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2 , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase
6.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542151

RESUMO

In the last decade, pathway-specific targeted therapy has revolutionized colorectal cancer (CRC) treatment strategies. This type of therapy targets a tumor-vulnerable spot formed primarily due to an alteration in an oncogene and/or a tumor suppressor gene. However, tumor heterogeneity in CRC frequently results in treatment resistance, underscoring the need to understand the molecular mechanisms involved in CRC for the development of novel targeted therapies. The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/Akt/mTOR) signaling pathway axis is a major pathway altered in CRC. The aberrant activation of this pathway is associated with CRC initiation, progression, and metastasis and is critical for the development of drug resistance in CRC. Several drugs target PI3K/Akt/mTOR in clinical trials, alone or in combination, for the treatment of CRC. This review aims to provide an overview of the role of the PI3K/Akt/mTOR signaling pathway axis in driving CRC, existing PI3K/Akt/mTOR-targeted agents against CRC, their limitations, and future trends.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
7.
J Med Chem ; 67(6): 4936-4949, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477582

RESUMO

The H1047R mutation of PIK3CA is highly prevalent in breast cancers and other solid tumors. Selectively targeting PI3KαH1047R over PI3KαWT is crucial due to the role that PI3KαWT plays in normal cellular processes, including glucose homeostasis. Currently, only one PI3KαH1047R-selective inhibitor has progressed into clinical trials, while three pan mutant (H1047R, H1047L, H1047Y, E542K, and E545K) selective PI3Kα inhibitors have also reached the clinical stage. Herein, we report the design and discovery of a series of pyridopyrimidinones that inhibit PI3KαH1047R with high selectivity over PI3KαWT, resulting in the discovery of compound 17. When dosed in the HCC1954 tumor model in mice, 17 provided tumor regressions and a clear pharmacodynamic response. X-ray cocrystal structures from several PI3Kα inhibitors were obtained, revealing three distinct binding modes within PI3KαH1047R including a previously reported cryptic pocket in the C-terminus of the kinase domain wherein we observe a ligand-induced interaction with Arg1047.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Antineoplásicos/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias/tratamento farmacológico , Mutação , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico
8.
Mol Biol Rep ; 51(1): 420, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483663

RESUMO

BACKGROUND: Although extensive efforts have been made to improve the treatment of colorectal cancer (CRC) patients, the prognosis for these patients remains poor. A wide range of anti-cancer agents has been applied to ameliorate the clinical management of CRC patients; however, drug resistance develops in nearly all patients. Based on the prominent role of PI3K/AKT signaling in the development of CRC and current interest in the application of PI3K inhibitors, we aimed to disclose the exact mechanism underlying the efficacy of BKM120, a well-known pan-class I PI3K inhibitor, in CRC-derived SW480 cells. MATERIALS AND METHODS: The effects of BKM120 on SW480 cells were studied using MTT assay, cell cycle assay, Annexin V/PI apoptosis tests, and scratch assay. In the next step, qRT-PCR was used to investigate the underlying molecular mechanisms by which the PI3K inhibitor could suppress the survival of SW480 cells. RESULT: The results of the MTT assay showed that BKM120 could decrease the metabolic activity of SW480 cells in a concentration and time-dependent manner. Investigating the exact mechanism of BKM120 showed that this PI3K inhibitor induces its anti-survival effects through a G2/M cell cycle arrest and apoptosis-mediated cell death. Moreover, the scratch assay demonstrated that PI3K inhibition led to the inhibition of cancer invasion and inhibition of PI3K/AKT signaling remarkably sensitized SW480 cells to Cisplatin. CONCLUSION: Based on our results, inhibition of PI3K/AKT signaling can be a promising approach, either as a single modality or in combination with Cisplatin. However, further clinical studies should be performed to improve our understanding.


Assuntos
Aminopiridinas , Cisplatino , Neoplasias Colorretais , Morfolinas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico
9.
Head Neck ; 46(5): 1126-1135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429897

RESUMO

PURPOSE: To find a new strategy to treat cisplatin-resistant head and neck squamous cell carcinoma (HNSCC), we investigated the effects of EGFR inhibitors on the PI3K/Akt/mTOR pathway and determined the efficacy of EGFR inhibitors in combination with PI3K inhibitors to suppress cell proliferation in cisplatin-resistant-HNSCC. METHODS: The cisplatin-resistant HNSCC cell lines were treated with four FDA approved EGFR inhibitors, which included Gefitinb or Erlotinib alone, or in combination with the pan-PI3K inhibitor, BKM120. Phosphorylation and total protein levels of cells were assessed by Western blot analysis. Cell proliferation was examined by MTS assay. Apoptosis was analyzed by flow cytometry. RESULTS: Cisplatin-resistant HNSCC cells were also resistant to EGFR inhibitors. However, a combination of EGFR inhibitors with PI3K inhibitor BKM120 dramatically improved the efficacy of EGFR inhibitors to inhibit cell proliferation and induce apoptosis. Furthermore, treatment with EGFR inhibitors differentially affected the phosphorylation of Akt and mTOR, which included partial inhibition, no inhibition, and induction. A combination of EGFR inhibitors and BKM120 completely blocked phosphorylation of EGFR, Akt, and S6K (an mTOR target). CONCLUSION: Our data provided a rationale for EGFR inhibitors in combination with PI3K inhibitors to treat cisplatin-resistant HNSCC.


Assuntos
Aminopiridinas , Cisplatino , Neoplasias de Cabeça e Pescoço , Morfolinas , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Cisplatino/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proliferação de Células , Receptores ErbB/metabolismo , Linhagem Celular Tumoral
10.
Int Immunopharmacol ; 130: 111747, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442576

RESUMO

Phosphatidylinositol 3-kinase (PI3K) is frequently hyperactivated in cancer, playing pivotal roles in the pathophysiology of both malignant and immune cells. The impact of PI3K inhibitors on the tumor microenvironment (TME) within lung cancer remains largely unknown. In this study, we explored the regulatory effects of GNE-493, an innovative dual inhibitor of PI3K and mammalian target of rapamycin (mTOR), on the TME of lung cancer. First, through the analysis of The Cancer Genome Atlas-lung squamous cell carcinoma (LUSC) cohort, we found PIK3CA to be related to CD8 T cells, which may affect the overall survival rate of patients by affecting CD8 function. We herein demonstrated that GNE-493 can significantly inhibit tumor cell proliferation and promote cell apoptosis while increasing the expression of the immunogenic death-related molecules CRT and HSP70 using in vitro cell proliferation and apoptosis experiments on the murine KP lung cancer cell line and human A549 lung cancer cell line. Next, through the establishment of an orthotopic tumor model in vivo, it was found that after GNE-493 intervention, the infiltration of CD4+ and CD8+ T cells in mouse lung tumor was significantly increased, and the expression of CRT in tumors could be induced to increase. To explore the mechanisms underlying PI3K inhibition-induced changes in the TME, the gene expression differences of T cells in the control group versus GNE-493-treated KP tumors were analyzed by RNA-seq, and the main effector pathway of anti-tumor immunity was identified. The IFN/TNF family molecules were significantly upregulated after GNE-493 treatment. In summary, our findings indicate that GNE-493 promotes immunogenic cell death in lung cancer cells, and elucidates its regulatory impact on molecules associated with the adaptive immune response. Our study provides novel insights into how PI3K/mTOR inhibitors exert their activity by modulating the tumor-immune interaction.


Assuntos
Morte Celular Imunogênica , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinase , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais , Microambiente Tumoral , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Células A549 , Feminino , Camundongos Endogâmicos C57BL
11.
Cell Death Dis ; 15(3): 237, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555280

RESUMO

End-stage nasopharyngeal carcinoma (NPC) has unsatisfactory survival. The limited benefit of chemotherapy and the scarcity of targeted drugs are major challenges in NPC. New approaches to treat late-stage NPC are urgently required. In this study, we explored whether the dual PI3K/mTOR inhibitor, PQR309, exerted a favorable antineoplastic effect and sensitized the response to gemcitabine in NPC. We observed that PI3K expression was positive and elevated in 14 NPC cell lines compared with that in normal nasopharygeal cell lines. Patients with NPC with higher PI3K levels displayed poorer prognosis. We subsequently showed that PQR309 alone effectively decreased the viability, invasiveness, and migratory capability of NPC cells and neoplasm development in mice xenograft models, and dose-dependently induced apoptosis. More importantly, PQR309 remarkably strengthened the anti-NPC function of gemcitabine both in vivo and in vitro. Mechanistically, PQR309 sensitized NPC to gemcitabine by increasing caspase pathway-dependent apoptosis, blocking GSK-3ß and STAT3/HSP60 signaling, and ablating epithelial-mesenchyme transition. Thus, targeting PI3K/mTOR using PQR309 might represent a treatment option to promote the response to gemcitabine in NPC, and provides a theoretical foundation for the study of targeted drugs combined with chemotherapy for NPC.


Assuntos
Neoplasias Nasofaríngeas , Fosfatidilinositol 3-Quinases , Fator de Transcrição STAT3 , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Gencitabina , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de MTOR , Inibidores da Angiogênese/farmacologia , Neoplasias Nasofaríngeas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396649

RESUMO

The dysregulation of the phosphatidylinositol-3-kinase (PI3K) pathway can lead to uncontrolled cellular growth and tumorigenesis. Targeting PI3K and its downstream substrates has been shown to be effective in preclinical studies and phase III trials with the approval of several PI3K pathway inhibitors by the Food and Drug Administration (FDA) over the past decade. However, the limited clinical efficacy of these inhibitors, intolerable toxicities, and acquired resistances limit the clinical application of PI3K inhibitors. This review discusses the PI3K signaling pathway, alterations in the PI3K pathway causing carcinogenesis, current and novel PI3K pathway inhibitors, adverse effects, resistance mechanisms, challenging issues, and future directions of PI3K pathway inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Carcinogênese/induzido quimicamente , Fosfatidilinositóis/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
14.
Am J Hematol ; 99(3): 439-456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304959

RESUMO

INTRODUCTION: Aggressive T-cell lymphomas continue to have a poor prognosis. There are over 30 different subtypes of peripheral T-cell lymphoma (PTCL), and we are now beginning to understand the differences between the various subtypes beyond histologic variations. MOLECULAR PATHOGENESIS OF VARIOUS SUBTYPES OF PTCL: Gene expression profiling and other molecular techniques have enabled deeper understanding of differences in various subtypes as reflected in the latest 5th WHO classification of PTCL. It is becoming increasingly clear that therapeutic approaches that target specific cellular pathways are needed to improve the clinical outcomes of PTCL. TARGETED THERAPIES: There are many targeted agents currently in various stages of clinical trials for PTCL that take advantage of the differential expression of specific proteins or receptors in PTCL tumors. This includes the CD30 directed antibody drug conjugate brentuximab vedotin. Other notable targets are phosphatidylinositol 3-kinase inhibitors, histone deacetylase inhibitors, CD25, and chemokine receptor 4. Anaplastic lymphoma kinase (ALK) inhibitors are promising for ALK expressing tumors. IMMUNOTHERAPIES: Allogeneic stem cell transplant continues to be the curative therapy for most aggressive subtypes of PTCL. The use of checkpoint inhibitors in the treatment of PTCL is still controversial, with best results seen in cases of extranodal natural killer cell/T-cell lymphoma. Bispecific antibody-based treatments and chimeric antigen receptor cell-based therapies are in clinical trials.


Assuntos
Linfoma de Células T Periférico , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Linfoma de Células T Periférico/terapia , Linfoma de Células T Periférico/tratamento farmacológico , Receptores Proteína Tirosina Quinases/uso terapêutico , Medição de Risco
15.
J Transl Med ; 22(1): 132, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310289

RESUMO

BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Fosfatidilinositol 3-Quinases/genética , Avaliação Pré-Clínica de Medicamentos , Proteínas Proto-Oncogênicas p21(ras)/genética , Detecção Precoce de Câncer , Biópsia Líquida , Inibidores de Fosfoinositídeo-3 Quinase , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação/genética
16.
Cancer Discov ; 14(2): 204-207, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38327193

RESUMO

PIK3CA, which encodes the p110α catalytic subunit of PI 3-kinase alpha (PI3Kα), is one of the most frequently genetically activated kinases in solid tumors. In two back-to-back papers, Varkaris and colleagues report on the development of a novel allosteric PI3Kα-mutant-selective inhibitor and early clinical experience with this compound. See related article by Varkaris et al., p. 227 (6) . See related article by Varkaris et al., p. 240 (5) .


Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Mutação , Inibidores de Fosfoinositídeo-3 Quinase , Classe I de Fosfatidilinositol 3-Quinases/genética , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
17.
J Med Chem ; 67(5): 3504-3519, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38377311

RESUMO

Photopharmacology is an emerging approach for achieving light-controlled drug activity. Herein, we design and synthesize a novel series of photoswitchable PI3K inhibitors by replacing a sulfonamide moiety with an azo group in a 4-methylquinazoline-based scaffold. Through structure-activity relationship studies, compound 6g is identified to be effectively switched between its trans- and cis-configuration under irradiation with proper wavelengths. Molecular docking studies show the cis-isomer of 6g is favorable to bind to the PI3K target, supporting compound 6g in the PSS365 (cis-isomer enriched) was more potent than that in the PSSdark (trans-isomer dominated) in PI3K enzymatic assay, cell antiproliferative assay, Western blotting analysis on PI3K downstream effectors, cell cycle analysis, colony formation assay, and wound-healing assay. Relative to the cis-isomer, the trans-isomer is more metabolically stable and shows good pharmacokinetic properties in mice. Moreover, compound 6g inhibits tumor growth in nude mice and a zebrafish HGC-27 xenograft model.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Camundongos Nus , Peixe-Zebra/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Relação Estrutura-Atividade , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
Xenobiotica ; 54(2): 64-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197324

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults. Available treatments have not markedly improved patient survival in the last twenty years. However, genomic investigations have showed that the PI3K pathway is frequently altered in this glioma, making it a potential therapeutic target.Paxalisib is a brain penetrant PI3K/mTOR inhibitor (mouse Kp,uu 0.31) specifically developed for the treatment of GBM. We characterised the preclinical pharmacokinetics and efficacy of paxalisib and predicted its pharmacokinetics and efficacious dose in humans.Plasma protein binding of paxalisib was low, with the fraction unbound ranging from 0.25 to 0.43 across species. The hepatic clearance of paxalisib was predicted to be low in mice, rats, dogs and humans, and high in monkeys, from hepatocytes incubations. The plasma clearance was low in mice, moderate in rats and high in dogs and monkeys. Oral bioavailability ranged from 6% in monkeys to 76% in rats.The parameters estimated from the pharmacokinetic/pharmacodynamic modelling of the efficacy in the subcutaneous U87 xenograft model combined with the human pharmacokinetics profile predicted by PBPK modelling suggested that a dose of 56 mg may be efficacious in humans. Paxalisib is currently tested in Phase III clinical trials.


Assuntos
Fosfatidilinositol 3-Quinases , Inibidores de Proteínas Quinases , Humanos , Ratos , Camundongos , Animais , Cães , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Fosfoinositídeo-3 Quinase/metabolismo , Encéfalo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Clin Pharmacol Ther ; 115(5): 1092-1104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38226495

RESUMO

Copanlisib is an intravenously administered phosphatidylinositol 3-kinase (PI3K) inhibitor, which is approved as monotherapy for relapsed follicular lymphoma in adult patients who have received at least two systemic therapies. In an April 2022 US Food and Drug Administration (FDA) Oncology Drug Advisory Committee (ODAC), the benefit-risk profile of the class PI3K inhibitors were scrutinized for use in hematological malignancies. Specifically, their unique toxicities may contribute to the high incidences in reported serious and high-grade treatment emergent adverse events (TEAEs), thereby reducing their overall tolerability and potentially limiting their successful use. These tolerability concerns may be contributed by or compounded by inadequate dose optimization. The recommended dosing regimen of copanlisib 60 mg administered on days 1, 8, and 15 of a 28-day cycle was selected as the maximal tolerated dose (MTD) during phase I. Thus, this analysis sought to justify the copanlisib dose regimen selection. Copanlisib exposure-efficacy relationships were considered from its large phase III trial, CHRONOS-3, whereas copanlisib safety was investigated by pooling data across its two large clinical trials to comprehensively assess its exposure-safety relationships. Results demonstrated a statistically significant positive linear exposure-efficacy relationship at the MTD. Exposure-safety analyses revealed a borderline significant linear relationship for grade ≥3 TEAEs and no significant exposure-safety relationships for other investigated safety end points. The model-based benefit/risk framework considered the established exposure-response models and defined clinical utility function which confirmed the appropriateness of the copanlisib dosing regimen across the range of its achieved exposures.


Assuntos
Fosfatidilinositol 3-Quinases , Quinazolinas , Adulto , Humanos , Quinazolinas/efeitos adversos , Pirimidinas/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase , Medição de Risco
20.
Biomed Pharmacother ; 171: 116217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286037

RESUMO

Phosphoinositide 3-kinase (PI3K)-α represents a key intracellular signal transducer involved in the regulation of key cell functions such as cell survival and proliferation. Excessive activation of PI3Kα is considered one of the major determinants of cancer therapy resistance. Despite preclinical and clinical evaluation of PI3Kα inhibitors in various tumor entities, including head and neck squamous cell carcinoma (HNSCC), it remains elusive how conventional radiochemotherapy can be enhanced by concurrent PI3K inhibitors and how PI3K deactivation mechanistically exerts its effects. Here, we investigated the radiochemosensitizing potential and adaptation mechanisms of four PI3K inhibitors, Alpelisib, Copanlisib, AZD8186, and Idelalisib in eight HNSCC models grown under physiological, three-dimensional matrix conditions. We demonstrate that Alpelisib, Copanlisib and AZD8186 but not Idelalisib enhance radio- and radiochemosensitivity in the majority of HNSCC cell models (= responders) in a manner independent of PIK3CA mutation status. However, Alpelisib promotes MAPK signaling in non-responders compared to responders without profound impact on Akt, NFκB, TGFß, JAK/STAT signaling and DNA repair. Bioinformatic analyses identified unique gene mutations associated with extracellular matrix to be more frequent in non-responder cell models than in responders. Finally, we demonstrate that targeting of the cell adhesion molecule ß1 integrin on top of Alpelisib sensitizes non-responders to radiochemotherapy. Taken together, our study demonstrates the sensitizing potential of Alpelisib and other PI3K inhibitors in HNSCC models and uncovers a novel ß1 integrin-dependent mechanism that may prove useful in overcoming resistance to PI3K inhibitors.


Assuntos
Compostos de Anilina , Cromonas , Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases , Tiazóis , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases/metabolismo , Integrina beta1/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Classe I de Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...